Genome-Wide Association Studies and Next-Generation Sequencing in Plant Response
325
Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S. Y., Freimer, N. B., Sabatti, C.,
& Eskin, E., (2010). Variance component model to account for sample structure in genome-
wide association studies. Nat. Genet., 42, 348–354.
Korte, A., & Farlow, A., (2013). The advantages and limitations of trait analysis with GWAS:
A review. Plant Meth., 9, 29.
Kumar, V., Singh, A., Mithra, S. A., Krishnamurthy, S. L., Parida, S. K., Jain, S., Tiwari, K.
K., et al., (2015). Genome-wide association mapping of salinity tolerance in rice (Oryza
sativa). DNA Res., 22, 133–145.
Kump, K. L., Bradbury, P. J., Wisser, R. J., Buckler, E. S., Belcher, A. R., Oropeza-Rosas,
M. A., Zwonitzer, J. C., et al., (2011). Genome-wide association study of quantitative
resistance to southern leaf blight in the maize nested association mapping population. Nat.
Genet., 43, 163–168.
Lehnert, H., Serfling, A., Friedt, W., & Ordon, F., (2018). Genome-wide association studies
reveal genomic regions associated with the response of wheat (Triticum aestivum L.) to
mycorrhizae under drought stress conditions. Front. Plant Sci., 9, 1728.
Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., et al., (2012).
GAPIT: Genome association and prediction integrated tool. Bioinformatics, 28, 2397–2399.
Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I., & Heckerman, D., (2011).
FaST linear mixed models for genome-wide association studies. Nat. Meth., 8, 833–835.
Liu, X. P., & Yu, L. X., (2017). Genome-wide association mapping of loci associated with
plant growth and forage production under salt stress in alfalfa (Medicago sativa L.). Front.
Plant Sci., 8, 853.
Luo, Z., Szczepanek, A., & Abdel-Haleem, H., (2020). Genome-wide association study
(GWAS) analysis of camelina seedling germination under salt stress condition. Agronomy,
10, 1444.
Malosetti, M., Van, D. L. C. G., Vosman, B., & Van, E. F. A., (2007). A mixed-model approach
to association mapping using pedigree information with an illustration of resistance to
Phytophthora infestans in potato. Genetics, 175, 879–889.
Manolio, T. A., (2010). Genome wide association studies and assessment of the risk of disease.
N. Engl. J. Med., 363, 166–176.
Milner, S. G., Jost, M., Taketa, S., Mazón, E. R., Himmelbach, A., Oppermann, M., Weise,
S., et al., (2019). Genebank genomics highlights the diversity of a global barley collection.
Nat. Genet., 51, 319–326.
Min, M. H., Maung, T. Z., Cao, Y., Phitaktansakul, R., Lee, G. S., Chu, S. H., Kim, K. W., &
Park, Y. J., (2021). Haplotype analysis of BADH1 by next-generation sequencing reveals
association with salt tolerance in rice during domestication. Int. J. Mol. Sci., 22, 7578.
Molina, C., Zaman-Allah, M., Khan, F., Fatnassi, N., Horres, R., Rotter, B., Steinhauer, D., et
al., (2011). The salt-responsive transcriptome of chickpea roots and nodules via deep super
sage. BMC Plant Biol., 11, 1–26.
Morison, J. I. L., & Lawlor, D. W., (1999). Interactions between increasing CO2 concentration
and temperature on plant growth. Plant, Cell Environ., 22, 659–682.
Morkunas, I., Woźniak, A., Mai, V. C., Rucińska-Sobkowiak, R., & Jeandet, P., (2018). The
role of heavy metals in plant response to biotic stress. Molecules, 23, 2320.
Myles, S., Peiffer, J., Brown, P. J., Ersoz, E. S., Zhang, Z., Costich, D. E., & Buckler, E. S.,
(2009). Association mapping: Critical considerations shift from genotyping to experimental
design. The Plant Cell, 21, 2194–2202.